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Abstract. A method is presented to calculate the natural circular dichroism recently discovered in the X-
ray range (XNCD). The basic formula represents XNCD as an odd second-rank tensor and leads to a sum
rule that relates XNCD to the mixing of odd and even orbitals in the ground state. A multiple-scattering
theory of XNCD is presented, and calculated spectra for the L-edges of iodine in LiIO3 compare favorably
with the experiments.

PACS. 33.55.Ad Optical activity, optical rotation; circular dichroism – 71.15.Cr Scattering methods –
78.70.Dm X-ray absorption spectra

1 Introduction

Very recently, natural circular dichroism was measured in
the X-ray range, in an inorganic non-centrosymmetric sin-
gle crystal (LiIO3) [1] and in a stereogenic organometal-
lic complex [2]. In both references, it was observed that
XNCD arises from the interference of electric dipole and
electric quadrupole transitions. Therefore, the existence
of XNCD is possible only when final states mix even and
odd orbitals. This mixing of even and odd orbitals is also
the driving mechanism of optical transitions in 3d ions
and is responsible for the colour intensity of many glasses
and minerals. Since the calculation of optical transition
intensities in transition metal ions is still in its infancy it
is important to have a measure of this mixing. We think
that XNCD can provide such a measure.

The derivation of a practical expression for the XNCD
cross-section led us to establish a sum rule for XNCD that
relates the intensity of XNCD to the even-odd orbital mix-
ing in the initial state. Then, a multiple-scattering theory
of XNCD is established, and detailed expressions are given
for the K- and L-edges, with real and complex spheri-
cal harmonics. Finally, multiple-scattering calculations are
carried out for the LI and LIII edges of iodine in LiIO3,
and compared with experiments.

a e-mail: brouder@lmcp.jussieu.fr
b Also: Université Joseph Fourier 1, Faculté de Pharmacie,

BP 53, 38041 Grenoble Cedex 9, France.

2 The XNCD cross-section

The basic aspects of natural circular dichroism in the X-
ray range were given in reference [3], where it was estab-
lished that the interference between electric dipole and
electric quadrupole transitions was the most important
mechanism because magnetic dipole transitions were neg-
ligible. The smallness of magnetic dipole transitions was
confirmed in references [2,4] (see, however, Ref. [5]). Build-
ing on this, we write the absorption cross-section in terms
of electric dipole and quadrupole transitions as [6]:

σ(ε̂) = 4π2α0~ω

×
∑
f

|〈f | (ε̂ · r) +
i

2
(ε̂ · r) (k · r) |g〉|2δ(Ef −Ei − ~ω),

where ε̂ is the X-ray polarization vector, k the X-ray
wavevector, |g〉 and |f〉 the initial and final states with
energies Ef and Ei, ~ω the X-ray energy and α0 the fine
structure constant. For notational convenience, we use
one-electron wavefunctions. However, all results of Sec-
tions 2 and 3 remain true with many-body initial and final
states. The only difference is that ε̂ · r becomes

∑
i ε̂ · ri

and (ε̂ · r)(k · r) becomes
∑
i(ε̂ · ri)(k · ri). We use one-

electron wavefunctions to avoid the presence of additional
summations and indices.

Our approach does not take relativistic effects into ac-
count. Therefore, if the reader is interested in absolute
cross-sections, she or he must multiply all cross-section
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formulas by 2 (the spin degeneracy) for a K or an LI-edge,
by 2/3 for an LII-edge, by 4/3 for an LIII-edge, and more
generally by (2j+ 1)/(2`0 + 1) for a core hole with orbital
momentum `0 and total angular momentum j = `0± 1/2.
This accounts for the spin-orbit interaction on the core
state, and we neglect the spin-orbit interaction on the pho-
toelectron state.

For simplicity, we consider a fully (elliptically) polar-
ized incident X-ray beam. The spectra corresponding to
partially polarized beams can be obtained from our for-
mulas by considering the partially polarized beam as the
sum of two fully polarized beams [7].

2.1 Derivation of the XNCD cross-section

In the present paper, we assume that the sample is non
magnetic, so that the initial and final state wavefunctions
can be chosen real. For magnetic samples, additional terms
would appear in the cross-section.

With this assumption we can write the natural circular
dichroism cross-section as:

σNCD = σ(ε̂)− σ(ε̂∗)

= −8π2α0~ω
∑
f

= [〈g|ε̂∗ · r|f〉〈f |ε̂ · r k · r|g〉]

× δ(Ef −Ei − ~ω).

At this stage, it is convenient to remark that ε̂∗ · r is odd
and ε̂ · r k · r is even under the inversion r→ −r, so that
σNCD is odd under inversion. Consequently, there is no
natural circular dichroism if the sample has a center of
symmetry.

For definiteness, we could choose the z-axis along the
X-ray beam direction (k·r = kz) and the polarization con-
vention used for X-ray magnetic circular dichroism, where
the spectrum is obtained as the difference between right
(helicity −~) and left (helicity +~) polarizations, so that

ε̂ · r = (x− iy)/
√

2. In that case, the XNCD cross-section
takes the simple form:

σNCD = 4π2α0~ωk
∑
f

[〈g|x|f〉〈f |yz|g〉

−〈g|y|f〉〈f |xz|g〉] δ(Ef −Ei − ~ω).

However, since we want to investigate the angular depen-
dence of XNCD, we have to consider a general polarization
vector ε̂ and X-ray direction k. It is convenient to write

ε̂ · r =
4π

3
r
∑
λ

(−1)λY −λ1 (ε̂)Y λ1 (r̂)

ε̂∗ · r =
4π

3
r
∑
λ′

(−1)λ
′

Y −λ
′

1 (ε̂∗)Y λ
′

1 (r̂)

k · r =
4π

3
kr
∑
µ

(−1)µY −µ1 (k̂)Y µ1 (r̂),

where Ym` (û) are spherical harmonics (with the Condon

and Shortley phase convention) evaluated at the angles
determining the unit vector û [8].

By recoupling the spherical harmonics Y λ1 (r̂) and
Y µ1 (r̂) we obtain (Ref. [9], p. 156)

ε̂ · r k · r =

(
4π

3

)2

k

√
3

10π

×
∑
λµν

(−1)νY −λ1 (ε̂)Y −µ1 (k̂)(1λ1µ|2ν)r2Y ν2 (r̂),

where (1λ1µ|2ν) is a Clebsch-Gordan coefficient [9].

Bringing the terms together yields

σNCD =− 8π2α0~ω
(

4π

3

)3

k

√
3

10π

×=
[ ∑
λµνλ′

(−1)ν+λ′Y −λ1 (ε̂)Y −µ1 (k̂)Y −λ
′

1 (ε̂∗)

× (1λ1µ|2ν)
∑
f

〈g|rY λ
′

1 (r̂)|f〉〈f |r2Y ν2 (r̂)|g〉
]

× δ(Ef −Ei − ~ω).

At this point, we use the fact that the wavefunctions can
be chosen real, so that initial and final states can be in-
terchanged (e.g. 〈f |ε̂ · r|g〉 = 〈g|ε̂ · r|f〉).

By writing =[ ] = (−i/2)[ ] + (i/2)[ ]∗ the imaginary
part of the previous expression becomes

−
i

2

∑
λµνλ′

(−1)ν+λ′
[
Y −λ1 (ε̂)Y −λ

′

1 (ε̂∗)

− Y −λ
′

1 (ε̂)Y −λ1 (ε̂∗)
]
Y −µ1 (k̂)(1λ1µ|2ν)∑

f

〈g|rY λ
′

1 (r̂)|f〉〈f |r2Y ν2 (r̂)|g〉.

Using Section 3.2.1 of reference [10], it can be proved that

Y −λ1 (ε̂)Y −λ
′

1 (ε̂∗)− Y −λ
′

1 (ε̂)Y −λ1 (ε̂∗) =

−

√
3

2π
Pc
∑
µ′

(1−λ1−λ′|1µ′)Y µ
′

1 (k̂),

where (1−λ1−λ′|1µ′) is a Clebsch-Gordan coefficient and
Pc is the rate of circular polarization defined by ε̂× ε̂∗ =
iPck̂. Note that Pc is positive for a right circular polar-
ization in the traditional sense [11] (i.e. for a negative
helicity).

Finally, the spherical harmonic Y µ
′

1 (k̂) is recoupled to

the Y −µ1 (k̂) coming from the electric quadrupole operator,
the sum of products of three Clebsch-Gordan coefficients
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Table 1. Angular dependence of XNCD and absorption for
the allowed point groups.

Point Group XNCD Absorption

D6, C6, D4, C4,
D3, C3

σ1 σa

D2d σ2 σa

C2v σ3 σb

S4 σ2 + σ3 σa

D2 σ1 + σ2 σb

C1h σ4 σc

C2 σ1 + σ2 + σ3 σc

C1 σ1 + σ2 + σ3 + σ4 σc + σd

is rewritten as the product of a 6-j symbol and a Clebsch-
Gordan coefficient (see Ref. [9], p. 108) and we obtain our
final form for the natural circular dichroism cross-section:

σNCD = −8π2α0~ω
(

4π

3

)3/2

k

√
3

2

Pc

5

×
∑
λµν

Y ν2
∗(k̂)(1λ2µ|2ν)

× i
∑
f

〈g|rY λ1 (r̂)|f〉〈f |r2Y µ2 (r̂)|g〉δ(Ef −Ei − ~ω).

(1)

As will be clear in the next sections, expression (1) is
well suited to the derivation of sum rules and multiple-
scattering formulas.

2.2 Symmetry and spectral shapes

If we use the notation

σ(ν) = −8π2α0~ω
(

4π

3

)3/2

k

√
3

2

1

5

∑
λµ

(1λ2µ|2ν)

× i
∑
f

〈g|rY λ1 (r̂)|f〉〈f |r2Y µ2 (r̂)|g〉δ(Ef −Ei − ~ω),

the natural circular dichroism writes

σNCD = Pc
∑
ν

Y ν2
∗(k̂)σ(ν),

where σ(ν) transforms as the components of an odd rank
2 spherical tensor. From its expression, it can be shown
that the tensor components have the following symmetry:

[σ(ν)]
∗

= (−1)νσ(−ν). Therefore, σNCD is real, as it should
be.

Point group symmetries cancel some of the five possi-
ble σ(ν). We can apply the same technique as for linear
dichroism [6] and calculate, for the point symmetry group

G of the sample space group, the tensor components com-
patible with the symmetry as:

〈σ(ν)〉 =
1

|G|

∑
R∈G

(−1)Rσ(ν′)D(2)
ν′ν(R),

where D(2)
ν′ν(R) is the Wigner rotation matrix correspond-

ing to the rotation part of the symmetry operation R and
(−1)R is 1 if R is a pure rotation and −1 if R is the
product of a rotation by an inversion. In this formula,
the symmetry operations were applied to the crystal, but
identical results are obtained by applying the operations
to the spherical harmonics Y ν2

∗(k̂).
From this treatment, we can deduce the angular de-

pendence of XNCD spectra. For most symmetry groups,
the angular dependence can be summarized by one or two
spectral shapes σ(ν). Since the linear dichroism of low sym-
metry crystals is very complex, angular dependence ex-
periments provide a useful test of the validity of measured
XNCD spectra.

We give now a list of the angular dependences of nat-
ural circular dichroism as a function of angle. We first
define a reference frame bound to the crystal axes. The
z-axis is aligned along the c-axis of the crystal and the
x-axis is along a direction, in the plane perpendicular to
c, defined by another symmetry operation (rotation axis,
mirror plane). When no such direction exists, any direc-
tion perpendicular to c can be chosen. In this frame, the
unit vector k̂ has components (sin θ cosφ, sin θ sinφ, cos θ).

For a given crystal, the point group to consider is not
the local point group of the absorbing atom but the point
group of the space group. In the following, σ(ν) are spectral
shapes, and σ(νr) (σ(νi)) stands for the real (imaginary)
part of σ(ν). The angular dependences of natural circular
dichroism for the point groups compatible with XNCD are
given in Tables 1 and 2. In Table 2, the angular depen-
dence is given as a function of the angles θ and φ, and as
a function of the wavevector direction k̂.

For completeness, we give the corresponding expres-
sion for the electric dipole cross-section, valid for complex
polarization vectors. Table 1 gives the angular dependence
for the point groups, Table 3 gives the corresponding func-
tions. The electric dipole spectral shapes are defined by [6]

σD(`,m) = −πα0~ω
(

4π

3

)2√
3
∑
λµ

(1λ1µ|`m)

×
∑
f

〈g|rY λ1 (r̂)|f〉〈f |rY µ1 (r̂)|g〉δ(Ef −Ei − ~ω).

3 XNCD sum rule

We now use the method developed by Thole et al. [12–
14] to derive a sum rule for the XNCD spectra at specific
edges.

We start from equation (1), that we write in a second
quantized form, and we use the Wigner-Eckart theorem to
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Table 2. Types of angular dependences for XNCD.

Coordinates Angles

σ1 Pc

√
5

16π (3k̂2
z − 1)σ(0r) Pc

√
5

16π (3 cos2 θ − 1)σ(0r)

σ2 Pc

√
15
8π (k̂2

x − k̂
2
y)σ(2r) Pc

√
15
8π sin2 θ cos 2φσ(2r)

σ3 Pc

√
15
2π k̂xk̂yσ

(2i) Pc

√
15
8π sin2 θ sin 2φσ(2i)

σ4 −Pc
√

15
2π k̂z(k̂xσ

(1r) + k̂yσ
(1i)) −Pc

√
15
8π sin 2θ(cosφσ(1r) + sinφσ(1i))

Table 3. Types of angular dependences for absorption.

Coordinates

σa σD(0, 0)− 1/
√

2(3|εz |
2 − 1)σD(2, 0)

σb σa −
√

3(|εx|
2 − |εy|

2)σDr(2, 2)

σc σb − 2
√

3<(εxε
∗
y)σ

Di(2, 2)

σd 2
√

3<(εxε
∗
z)σ

Dr(2, 1) + 2
√

3<(εyε
∗
z)σ

Di(2, 1)

derive

〈g|rY λ1 |f〉 =∑
`m`0m0

(−1)m0

√
(2`0 + 1)3(2`+ 1)

4π

(
`0 1 `
0 0 0

)
D`

×

(
`0 1 `
−m0 λ m

)
〈g|a+

`0m0
a`m|f〉

〈f |r2Y µ2 |g〉 =∑
`′m′`0m′0

(−1)m
′

√
(2`0 + 1)5(2`′ + 1)

4π

(
`′ 2 `0
0 0 0

)
Q`′

×

(
`′ 2 `0
−m′ µ m′0

)
〈f |a+

`′m′a`0m′0 |g〉,

where `0 is the angular momentum of the core hole, and
the radial dipole and quadrupole integrals are defined by

D` =

∫ ρMT

0

r3drφ0(r)R0
` (r)

Q`′ =

∫ ρMT

0

r4drφ0(r)R0
`′(r),

where the core state and photoelectron radial muffin-tin
wavefunctions are φ0(r) and R0

` (r), respectively, and φ0(r)
is assumed to be localized in the muffin-tin sphere of ra-
dius ρMT . Here, ` is the final angular momentum of the
dipole transition (` = 1 if `0 = 0, ` = 0 or 2 if `0 = 1), and
`′ that of the quadrupole transition (`′ = 2 if `0 = 0, `′ = 1
or 3 if `0 = 1). Therefore, ` and `′ have opposite parity. To
avoid any ambiguity, we stress here that the term final an-
gular momentum is an abuse of language. Since the cluster
is not spherically symmetric, angular momentum is not a
good quantum number and final states are a mixture of

many angular momenta. The dipole and quadrupole tran-
sition operators pick up, in the final states, the compo-
nents corresponding to angular momenta ` and `′.

Since the normalization procedure of experimental
spectra enables us to obtain the absorption spectrum cor-
responding to a specific core hole angular momentum `0,
we can suppress the sum over `0.

With this notation, we can use angular momentum al-
gebra to reexpress the sum of products of three 3-j sym-
bols as a product of a 6-j and a 3-j symbols, and the
XNCD cross-section becomes:

σNCD = 8π2α0~ωk
√

2π

15
Pc(2`0 + 1)

×
∑
``′

√
(2`+ 1)(2`′ + 1)

{
2 `′ `
`0 1 2

}
D`Q`′

×

(
` 1 `0
0 0 0

)(
`′ 2 `0
0 0 0

)∑
ν

Y ν2
∗(k̂)σν``′ (2)

where

σν``′ = i
∑
mm′κ

(−1)`−m(`−m`′m′|2ν)

×
∑
f

〈g|a+
`0κ
a`m|f〉〈f |a

+
`′m′a`0κ|g〉δ(Ef −Ei − ~ω).

The next step towards the derivation of a sum rule is
to eliminate the external energy dependent factors so
that the integral over energy yields a resolution of iden-
tity. Energy appears in equation (2) through ~ω and
k = (~ω)/(~c). Therefore, the sum rule is obtained from
the experimental spectrum σNCD as

ΣNCD =

∫
σNCD

(~ω)2
d(~ω).

Carrying out this integral over energies in equation (2)
eliminates the delta function, leaving

∑
f |f〉〈f | = 1

[15]. The anticommutation relations for the creation-
annihilation operators and the fact that the core shell is
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full in the initial state lead to the final expression

ΣNCD =
8π2α0

~c

√
2π

15
Pc(2`0 + 1) (3)

×
∑
``′

√
(2`+ 1)(2`′ + 1)

{
2 `′ `
`0 1 2

}
D`Q`′

×

(
` 1 `0
0 0 0

)(
`′ 2 `0
0 0 0

)∑
ν

Y ν2
∗(k̂)〈g|Mν

``′ |g〉

where the operator

Mν
``′ = i

∑
mm′

(−1)`−m(`−m`′m′|2ν)a`ma
+
`′m′

measures a mixing of ` and `′ orbitals in the ground
state. Notice that we are speaking here of the many-body
ground state |g〉 and not of the initial core state of the
one-body approach. From the Wigner-Eckart theorem, the
mixing operator Mν

``′ would be proportional to Y ν2 (r̂) (a
quadrupole moment) if ` and `′ had the same parities.
However, the analogy between Mν

``′ and a quadrupole mo-
ment is misleading, since Mν

``′ couples only angular mo-
menta of different parities.

To get some insight into the physical meaning of the
operatorMν

``′ , we first notice that, since ` 6= `′, it measures
the mixing of different atomic orbitals. Moreover, since the
parity corresponding to ` and `′ is different, the operator
measures the orbital mixing caused by the absence of an
inversion center in the system.

If we take the example of a molecular orbital

|g〉 =
∑
m

c`m|`m〉+
∑
m′

c`′m′ |`
′m′〉,

then

〈g|M0
``′ |g〉 ∝

∑
m>0

m
√
n2 −m2=[c`mc

∗
`′m′ ],

where n = max(`, `′).
The meaning of the sum rule (3) is clearer at the K-

edge, where `0 = 0, ` = 1, `′ = 2 and the sum rule becomes

ΣNCD =
4π2α0

~c

√
2π

45
Pc
∑
ν

Y ν2
∗〈g|Mν

12|g〉D1Q2.

Therefore, XNCD measures the mixing of p and d orbitals
in the ground state. This parameter is very important for
the calculation of the intensity of optical transitions. The
measurement of XNCD spectra at the K-edge of transition
metal impurities offers a unique independent determina-
tion of this parameter.

In the case an LII- or LIII-edge the selection rules com-
ing from the the 6-j symbol eliminate the contribution of
the dipole transitions towards s states and we are left with
`0 = 1, ` = 2, `′ = 3, and `0 = 1, ` = 2, `′ = 1 for which
the sum rules are

ΣNCD =
4π2α0

~c

√
2π

125
Pc
∑
ν

Y ν2
∗
[
2〈g|Mν

23|g〉D2Q3

− 〈g|Mν
21|g〉D2Q1

]
.

The application of this sum rule to experimental spectra
meets the same difficulties as the sum rule of X-ray mag-
netic circular dichroism [16]. In particular, the integration
bounds have to be chosen carefuly.

4 Multiple-scattering approach

In this section, we specialize to a one-particle approach to
XNCD. The Green function approach is used with com-
plex and real spherical harmonics. Both presentations are
useful because each brings its own light to the result and
because we find useful to discuss an apparent discrep-
ancy between the formulas obtained with complex and
real spherical harmonics. Finally, we present the decom-
position of XNCD into scattering paths, showing that sin-
gle scattering does not contribute to it. In this section, we
use atomic units (~ = 2m = 1).

4.1 The Green function approach

In this section, we use the Green function form of the
multiple-scattering approach. In equation (1), we make
the substitution

∑
f

|f〉δ(Ef −Ei − ~ω)〈f | = −
1

π
=[G(Ei + ~ω)]

=
i

2π
[G(Ei + ~ω)−G∗(Ei + ~ω)].

Then, we use the expression for the multiple-scattering
Green function

G(ri, r
′
j ; z) = −i

∑
`m

ti`R
i
`(r<)Y m` (r̂i)H

i
`(r>)Y m`

∗(r̂′i)δi,j

+
∑

`m`′m′

Ri`(ri)Y
m
` (r̂i)(τ

ij
`m`′m′ + ti`δ`,`′δm,m′δi,j)

×Rj`′(r
′
j)Y

m′

`′
∗
(r̂′j) (4)

where κ =
√
z, δi` is the (complex) phase-shift for po-

tential V i(r), ti` = sin δi` exp iδi`, R
i
`(r) is the regular

solution of the radial Schrödinger equation for poten-
tial V i(r) that matches smoothly to

√
κ(cot δi`j`(κr) −

n`(κr)) at the muffin-tin radius ρi, H
i
`(r) is the irreg-

ular solution of the radial Schrödinger equation for po-
tential V i(r) that matches smoothly to

√
κh+

` (κr) at

the muffin-tin radius. Finally τ ij`m`′m′ are the matrix ele-

ments of the multiple-scattering matrix τ = [T−1
a −H]

−1
,

where (Ta)ij`m`′m′ = −ti`δi,jδ`,`′δm,m′ and Hij
`m`′m′ =

−4πi
∑
λµ i

`+λ−`′C`
′m′

`mλµh
+
λ (κRij)Y

µ
λ (R̂ij). In the last ex-

pression, the Hankel function h+
λ is defined as the function

h
(1)
λ of reference [17]. The site i = 0 is the absorbing site.
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Equation (4) for the Green function enables us to use
the Wigner-Eckart theorem in equation (1). This leads to:

σNCD = −4πα2
0ω

2

√
2π

15
Pc(2`0 + 1)

×
∑
``′

(
` 1 `0
0 0 0

)(
`′ 2 `0
0 0 0

){
2 `′ `
`0 1 2

}
(5)

×
√

(2`+ 1)(2`′ + 1)D`Q`′<
[∑

ν

Y ν2
∗(k̂)τ00(``′; 2ν)

]
.

We recall that [18]

τ00(``′, aα) =
∑
mm′

(−1)(`−m)(`−m`′m′|aα)τ00
`m`′m′ .

The presence of a real part in the XNCD cross-section is
surprising, since we have started from the imaginary part
of the Green function. It will be explained in Section 4.3.

4.2 K-, L- and M-edges in complex spherical harmonics

It can be useful to evaluate the absorption and NCD
cross-sections for specific edges. To express the absorp-
tion cross-section for an elliptically polarized beam, we

use the coupled tensor [ε̂⊗ ε̂∗](2)
ν defined by Varshalovich

et al. (Ref. [10], p. 66). When the wavevector is along

Oz, the only non-zero coupled tensor is [ε̂⊗ ε̂∗](2)
0 =

(3|εz|2 − 1)/
√

6 [19].
For a K- or an LI-edge the absorption cross-section is

σD =−
4πα0ω

3
√

3
D2

1=
[
τ00(11; 00)

−
√

3
∑
ν

(−1)ν [ε̂⊗ ε̂∗](2)
−ντ

00(11; 2ν)
]

and the XNCD cross-section is

σNCD =−
4πα2

0ω
2

15

√
2πPcD1Q2

×<
[∑

ν

Y ν2
∗(k̂)τ00(12; 2ν)

]
. (6)

For an LII- or LIII-edge, we must take into account dipole
transitions towards d and s states. The electric dipole ab-
sorption cross-section for d final states is:

σD =−
8πα0ω

3
√

5
D2

2=
[
τ00(22; 00)

−

√
21

20

∑
ν

(−1)ν [ε̂⊗ ε̂∗](2)
−ντ

00(22; 2ν)
]
.

For s final states,

σD = −
4πα0ω

3
D2

0=
[
τ00(00; 00)

]
.

For the interference between s and d final states

σD =−
16πα0ω√

30
D0D2

×=
[∑

ν

(−1)ν [ε̂⊗ ε̂∗](2)
−ντ

00(20; 2ν)
]
.

For XNCD, the selection rules due to the 6-j symbol in
equation (5) show that the dipole transitions to s-states
do not intervene and the XNCD cross-section is

σNCD = −
4πα2

0ω
2

25

√
2πPcD2

×<
[∑

ν

Y ν2
∗(k̂)

(
2Q3τ

00(23; 2ν)−Q1τ
00(21; 2ν)

)]
.

(7)

In equation (7), the term 2Q3τ
00(23; 2ν) corresponds to

`′ = 3 and measures the f states reached by quadrupole
transitions, the term−Q1τ

00(21; 2ν) corresponds to `′ = 1
and measures the p states reached by quadrupole transi-
tions.

Because of the symmetry relation τ00(21; 2ν) =
τ00(12; 2ν) [20], we see that the XNCD cross-section at
the LI-edge (Eq. (6)) is proportional to the component
of the XNCD cross-section at the LII,III-edges which cor-
responds to quadrupole transitions towards p-states (the
second term of Eq. (7)). When the absorption spectra are
normalized to one far from the edge, the p-component of
XNCD at the LII,III-edge of iodine in LiIO3 was found to
be of the same shape, but around 14 times smaller than
the XNCD spectrum at the LI-edge, and of opposite sign
(see Sect. 5).

For an MIV- or MV-edge, we must take into account
dipole transitions towards f and p states. The electric
dipole absorption cross-section for f final states is:

σD =−
4πα0ω√

7
D2

3=
[
D2

3τ
00(33; 00)

−
3
√

2

5

∑
ν

(−1)ν [ε̂⊗ ε̂∗](2)
−ντ

00(33; 2ν)
]
.

For p final states,

σD =−
8πα0ω

3
√

3
D2

1=
[
τ00(11; 00)

−

√
3

10

∑
ν

(−1)ν [ε̂⊗ ε̂∗](2)
−ντ

00(11; 2ν)
]
.

For the interference between p and f final states

σD =−
8πα0ω

√
6

5
D1D3

×=
[∑

ν

(−1)ν [ε̂⊗ ε̂∗](2)
−ντ

00(13; 2ν)
]
.

For the natural circular dichroism cross-section, two con-
tributions are relevant. The first one corresponds to dipole
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transitions towards p-states:

σ1
NCD =

4πα2
0ω

2

15

√
2πPcD1Q2

×<
[∑

ν

Y ν2
∗(k̂)τ00(12; 2ν)

]
,

and looks very much like the dichroism at the K-edge
(apart from the sign). The second one corresponds to
dipole transitions towards f -states:

σ2
NCD =

8πα2
0ω

2

35

√
2πPcD3<

[∑
ν

Y ν2
∗(k̂)

×
(
Q2τ

00(32; 2ν)−

√
5

2
Q4τ

00(34; 2ν)
)]
. (8)

Here the first term looks like the first contribution to the
LII,III-edge spectra, the second term gives information on
the mixing of f and g states in the continuum.

4.3 K- and L-edges in real spherical harmonics

In practice, multiple-scattering programs use real spher-
ical harmonics, defined, for m > 0, as cosine spherical
harmonics Ymc` = (Y m` + Y m∗` )/

√
2 and sine spherical

harmonics Yms` = (Y m` − Ym∗` )/(
√

2i). For definiteness,
we consider a right-circularly polarized X-ray beam along
Oz (ε̂ · r = (x− iy)/

√
2).

For a K- or an LI-edge the absorption cross-section is

σD = −
2πα0ω

3
D2

1=
[
τ00
11c 11c + τ00

11s 11s

]
and the XNCD cross-section is

σNCD = −
2πα2

0ω
2

3
√

5
D1Q2=

[
τ00
11c 21s − τ

00
11s 21c

]
.

For an LII- or LIII-edge, the absorption cross-section is
(for the dipole transitions to d states)

σD =−
2πα0ω

15
D2

2=
[
2τ00

20 20

+ 3τ00
21c 21c + 3τ00

21s 21s + 6τ00
22c 22c + 6τ00

22s 22s

]
and the XNCD cross-section is

σNCD =−
4πα2

0ω
2

5
√

5
D2=

[
Q1

(
τ00
21c 11s − τ

00
21s 11c

)
+ 2

√
5

7
Q3

(
τ00
22c 32s − τ

00
22s 32c +

√
2

5
τ00
21c 31s

−

√
2

5
τ00
21s 31c

)]
.

With real spherical harmonics, the absorption cross-
section is given in terms of the imaginary part of the
multiple-scattering matrix, whereas the real part is used
in the complex spherical harmonics. The reason for this is
simply that the basis change introduces a factor i. More
precisely:

τ00
`mc `′ms − τ

00
`ms `′mc = −i(τ00

`m `′m − τ
00
`−m`′−m).

4.4 Wavefunction approach

It is possible to connect the Green function approach to
the wavefunction approach through the generalized opti-
cal theorem [21]. It is convenient to start from the second
quantized expression (2) and to write the final states (in
real spherical harmonics and in the one-electron approxi-
mation) as

|f〉 =
∑
`mα

B0
`mα(κ̂;ω)a+

`mαa`0m0α0 |g〉,

where B0
`mα(κ̂;ω) is the multiple-scattering component,

over the `mα basis (α = c, s), of the photoelectron wave-
function corresponding to an outgoing electronic plane
wave along κ̂.

Then, the matrix elements in equation (2) becomes∫
dκ̂B0

`mα(κ̂;ω)B0∗
`′m′α′(κ̂;ω) = =τ00

`mα`′m′α′ ,

because of the optical theorem. For `′ = `, the right-hand
side would be proportional to the ` density of states on the
absorbing site. Therefore, for the case of XNCD, we obtain
a kind of `, `′ cross-density of states on the absorber.

4.5 Expansion into scattering paths

In this section, the full multiple-scattering tensor
τ00(``′; 2ν) will be expanded as a multiple-scattering se-
ries. From this expansion, it will be shown that single scat-
terings do not contribute.

In reference [18], the multiple-scattering tensor
τ00(``′; 2ν) was written as a multiple-scattering series

τ00(``′; 2ν) = τ (2)(``′; 2ν) + τ (3)(``′; 2ν) + · · · ,

where τ (n)(``′; 2ν) represents the contribution due to the
scattering of the photoelectron by n−1 sites of the cluster.
In this expansion, the atomic contribution, τ (0)(``′; 2ν),
is zero because ` 6= `′, and the first-order contribution
τ (1)(``′; 2ν) is zero because the initial and final sites
are identical (the absorbing site). It was shown in refer-
ence [18] that each term in the series transforms as the full
cross-section. In other words, each term of the series shares
the same symmetry properties as the full cross-section.
Therefore, a scattering path through a set of atoms can
contribute to natural circular dichroism only if the sym-
metries of that set of atoms are compatible with natural
circular dichroism.

This remark enables us to eliminate single scattering
τ (2)(``′; 2ν) from the series. A pair of atoms cannot ex-
hibit natural circular dichroism, because it is possible to
find a mirror plane containing the X-ray wavevector and
the two atoms. Since this operation changes the helicity of
the incoming photon and leaves the two-atom system in-
variant, the single-scattering process does not contribute
to the dichroic signal. This argument using symmetry can
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be supplemented by a direct proof. In the notation of ref-
erence [18]

τ (2)(``′; 2ν) =− t0` t
0
`′

∑
ab`′′

Oa``′′(κR0j)O
b
`′′`′(κR0j)t

j
`′′

× (−1)a
√

(2a+ 1)(2b+ 1)

×W (lal′b; l′′2)〈2||a||b〉Y γ2 (R̂0j).

From the definition of Oa``′′ and Ob`′′`′ we see that `+a+`′′

is even and `′+b+`′′ is even. Since `+`′ is odd, this means
that a+ b is odd. However, 〈2||a||b〉 is zero when a+ b is
odd, so that τ (2)(``′; 2ν) = 0 and the single scattering con-
tribution is zero. Because of this, XNCD is a unique probe
of multiple-scattering processes, especially of the influence
of disorder on the multiple-scattering contributions.

The first non-zero contribution is the double scattering

τ (3)(``′; 2ν) = −t0`t
0
`′Ξ

3(``′; 2ν),

where Ξ(``′; 2ν) is defined at the end of page 1498 of ref-
erence [18].

The last point we want to stress is that, if the point
group of the crystal is not too small, many scattering
paths do not contribute to XNCD. The full conditions can
be deduced from the list of angular dependences given in
Section 2.2 but we give here a useful list of criteria. If a
scattering path is transformed into itself (or if paths of
the subset transform into one another) by a symmetry
operation T then:

– if T is an inversion, the path (subset) does not con-
tribute;

– if T is a rotation by 2π/n with n > 2, the path (subset)
contributes only to the tensor component ν = 0 (Oz is
along the rotation axis);

– if T is a rotation by π the path (subset) does not con-
tribute to the tensor components ν = ±1;

– if T is a mirror whose plane contains or is perpendicu-
lar to Oz, then the path (subset) does not contribute
to the tensor components ν = 0.

The convergence of the multiple-scattering series was
tested for LiIO3 and is given in the next section.

5 Calculation of XNCD spectra of LiIO3

The calculation of the XNCD spectra at the L-edges of
iodine in LiIO3 where conducted starting from the crystal
structure established by Svensson et al. [22]. More pre-
cisely, we took the space group P63 (173) with lattice pa-
rameters a = 5.481 Å and b = 5.172 Å. The atomic posi-
tions were taken as Li 2(a) (0,0,0.0764), I 2(b) (1/3,2/3,0)
and O 6(c) (0.2471,0.3420,−0.1621). Since the chirality of
the sample used in our experiments was unknown, a com-
parison of calculation and experiment should give us the
absolute conformation of our sample.

Calculations were performed in the framework of the
MS theory illustrated above, within the muffin-tin approx-
imation and using real spherical harmonics as angular mo-
mentum basis functions.

Due to the finite mean free path of the photoelectron in
the excited state, the crystal was simulated by a cluster of
40 atoms having a radius of 9 Å around the photoabsorb-
ing iodine atom, slightly more than the average electron
mean free path in the energy range considered and enough
to reach cluster size convergence.

The Mattheiss prescription [23] was used to construct
the cluster electronic density by superposition of neutral
atomic charge densities obtained from the Clementi-Roetti
tables [24] while the Coulomb part of the potential was
obtained by superimposing the corresponding atomic po-
tentials.

In order to simulate the charge relaxation around the
core hole in the photoabsorber of atomic number Z, we
used the so called screened-relaxed Z + 1 approximation
(final state rule) [25], which consists in taking the orbitals
of the Z + 1 atom with the core electron promoted to
the first empty valence orbital for constructing the charge
density and potential of the photoabsorber.

For the exchange-correlation part of the potential, we
took the energy- and position-dependent complex Hedin-
Lundquist (H-L) self energy Σ (r, E) [26] as illustrated by
Tyson et al. (see [27] and references therein). A constant
Γh/2, equal to the core hole half width at half maximum,
was added to the imaginary part of the H-L potential to
take into account the finite core hole lifetime. Altogether
the complex part of the potential gives the amplitude at-
tenuation of the excited photoelectronic wave due to ex-
trinsic inelastic losses and the core hole width, and takes
automatically into account the photoelectron mean free
path in the excited final state. The core hole width was
taken equal to 3.5 eV for the LI edge and 2.7 eV for the
LIII edge [28].

Finally the muffin-tin radii were chosen according to
the criterion of Norman [29], allowing a 15% overlap be-
tween contiguous spheres to simulate the atomic bond (the
radii were 2.23, 1.69 and 2.30 atomic units for I, O and
Li, respectively).

For comparison with experiment, the absorption spec-
tra were normalized to one far from the edge. In the ex-
periments, the X-ray was directed along the c-axis. The
intensity of the XNCD spectrum is fixed by the normal-
ization of the absorption spectrum.

The details concerning the experimental set up and the
sample used are given in reference [1].

5.1 LI-edge of iodine

Figure 1 compares the calculated and experimental ab-
sorption spectra and XNCD at the LI-edge of iodine in
LiIO3. The agreement is not very good for the absorp-
tion spectrum. One notices a contraction of the calculated
spectrum as compared to the experimental one. This is an
effect of the non-selfconsistency of the charge density. The
agreement is better for the XNCD signal. The intensity of
the experimental spectra should be multiplied by 1/0.7, so
the calculation underestimates the XNCD spectrum. The
better agreement for XNCD as compared to absorption is
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Fig. 1. Experimental (solid line) and calculated (dotted line)
absorption and XNCD spectra at the LI-edge of iodine in
LiIO3. The XNCD spectra were multiplied by 50. The cal-
culation was carried out from a sum of neutral atomic charges,
with Hedin-Lundqvist exchange and correlation potential.

probably due to the molecular and multiple-scattering na-
ture of the XNCD signal. Multiple scattering works well in
predicting variations (e.g. phase transitions with pressure
[30] or temperature [31]) and then gives good agreement
for XNCD which is a difference spectrum.

In Figure 1, the calculated XNCD signal was not mul-
tiplied by −1, which suggests that the sample has the
same chirality as that used in the structural investigation
of reference [22].

Finally, the convergence of the expansion of the XNCD
cross-section into multiple-scattering contributions is pre-
sented in Figure 2. At very low energy, the multiple-
scattering series diverges, as is usual, but at higher energy
the first multiple-scattering contributions capture the es-
sential features of the XNCD spectrum. Further work is in
progress to identify the path contributing most to natural
circular dichroism.

5.2 LIII-edge of iodine

Figure 3 compares calculated and experimental absorption
and XNCD spectra at the LIII-edge of iodine in LiIO3.
The potential is constructed in a similar way as for the LI

spectrum, except for the 2p hole, and core-hole width of
2.7 eV [28]. In the absorption spectrum, the position of the
structures is correct, but their intensities does not repro-
duce well the experimental spectrum. A feature around
10 eV could not be obtained by our calculation. As for
the LI-edge, the agreement is better for XNCD than for
absorption and the general shape of the calculated XNCD
spectrum reproduces that of the experimental spectrum,
except for a background and a peak around 1 eV.

It was established in Section 4 that the XNCD signal is
the sum of a contribution due to f states and a contribu-

−10 0 10 20 30 40 50
Energy (eV)

−2

−1

0

1

2

3

full scattering
double scattering
triple scattering

Fig. 2. Comparison of the full multiple-scattering signal (solid
line) with the double-scattering contribution (dashed line) and
the sum of the double- and triple-scattering contributions (dot-
ted line).
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ar
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ni
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Calc. Abs.
Calc. XNCD (x100) x 0.5
Exp. Abs.
Exp. XNCD (x100)

Fig. 3. Experimental (solid line) and calculated (dotted line)
absorption and XNCD spectra at the LIII-edge of iodine in
LiIO3. The experimental XNCD spectrum was multiplied by
100 and the calculated XNCD spectrum by 50. The calculation
was carried out from a sum of neutral atomic charges, with
Hedin-Lundqvist exchange and correlation potential.

tion due to p states. Figure 4 compares these two contribu-
tions. It is clear that the transitions toward p states is very
similar to the LI spectrum (with opposite sign). It should
be noticed that the absence of calculated XNCD signal
around 1 eV is due to a destructive interference between p
and f contributions. Far from the edge, the p contribution
becomes small as compared to the f contribution.
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Fig. 4. For the calculated spectrum of Figure 3, full XNCD
signal (dotted line), contribution of the quadrupole transitions
towards p states (thick solid line) and towards f states (thin
solid line).

The large discrepancy between the experimental and
calculated absorption spectra might be due to the presence
of multielectronic excitations [32].

6 Conclusion

Natural circular dichroism was investigated in the X-ray
range. A sum rule was derived and a multiple scatter-
ing description of this effect was given. Our first results
show that the basic physics of XNCD is understood and
the agreement with experiment is sufficient to draw a few
preliminary conclusions.

XNCD can be understood within the multiple-
scattering formalism. This effect is fully molecular in na-
ture in the sense that it is zero for an isolated atom. More-
over, single scattering does not contribute to it. These two
characters of XNCD make it a sensitive probe of the co-
ordination shells surrounding the absorber. The multiple-
scattering terms give information on the bond angles and
are not mixed with EXAFS signals. These aspects can help
measuring the structural relaxation around impurities in
single crystals.

XNCD is also determined by a mixing of odd and even
orbitals. This mixing is relevant to the optical proper-
ties of transition metals in glasses and crystals and no
method existed to determine this mixing before the advent
of XNCD. Therefore, the calculation of optical spectra is
usually made using incontrolable parameters to describe
p-d mixing. Moreover, in optical spectroscopy, the signals
coming from all elements in the sample are superimposed.
In contrast, XNCD is element selective and the p-d mixing
can be measured separately around each atomic species.
The amount of p-d mixing is also important for the non-
linear optical properties of crystals.

In X-ray absorption spectroscopy, the main thermal ef-
fect is represented by a Debye-Waller factor on the single-
scattering contribution. Because of the absence of this con-
tribution in XNCD spectra, and because of the slow con-
vergence of the multiple-scattering series (Fig. 2) the ac-
tion of disordered must be calculated on the full multiple-
scattering expression. Therefore, XNCD provides a unique
test of the multiple-scattering theories of disordered ef-
fects. In principle, the spectrum calculated at 0 K should
be larger than the experimental spectrum at room tem-
perature. This is not the case, maybe because inelastic ef-
fects are overestimated by our Hedin-Lundvist potential.
Therefore, a study of XNCD spectra as a function of tem-
perature is required to estimate the influence of thermal
effects.

Finally, XNCD can be used to determine the chirality
of a structure, as was demonstrated in the present exam-
ple, where the comparison of experiment with calculation
showed that the absolute configuration of our sample is
the same as for the sample analyzed in reference [22].
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and her very constructive comments. We are grateful to O.K.
Andersen and O. Jepsen who made their LMTO program avail-
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Contract ERBCHXCT90360.
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